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TUY LATERAL INSTABILITY OF DEEP RECTANGULAR BEAMS

By C. Dumont and H. N. Hill
SUMMARY

Sxperimental and analytical studies were made of
80lid andi hollow desp rectangular beams to study their
lateral instability under various conditions of loading
and restraint. The tests were made on bars and tubes
of 178T aluminum 2lloy. Failure by lateral buckling oc-
curred only in tests on ths solid beams. It was found
that, within the slastic range, the test results were in
agroement with the classical theory for the lateral
buckling of deep beams as given by Prandtl, Michell, and
Timoshenko., The tests were extended to the inelastic
range where it was found that the substitution for .
Young's modulus of an average modulus of elasticity Ade-
-rived from the stress-strain curve made it possible to
predict inetadility at high stresses.

INTRODUCTION

Rectangular bars are occasionally used in the form
0of beamg with the lone dAimension of the rectangle in the
plane of the loads. Then the Aepth of such a bdeam is
great compasrel with the width, the beam may become un-
stable in a2 lateral direction with a consecusent sidewise
bucklineg, perhaps at a stress below the yleld strength
of the material. Thlisg action is similar to the buckling
of a column under an axial load., In the lateral buck-
ling of beams, however, the stadblliity dAepends on the ftor-
sional as well as the flexural stiffness. A considera-
tlon of stability ts frequently of greater importance in
1esigning with aluminum alloys than it 1s with other
structural materials having higher modull of elasticlty.
It seems desirable to include in the Handbook, "Strue-
tural Aluminum," a section on lateral stability of beams.
In order to arrive at a suitable formula for allowable
working stresses, it is necessary to have an understand-
ing of the factors contributing to the lateral stabllity
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of such a beam, and the effect of different conditions of
loading and restraint.

The problem of the lateral I1nstability of deep rec-
tangular beams appears to have been treated first by
Prandtl (reference 1) in 1899, In the same year the prob-
lem was discussed by A. G. M. Michell (reference 2). Both
investigators arrived at substantially the same solution.
The subject was further discussed by S. Timoshenko (refer-
ence 3), who treatel various conditions of loading and
lateral restraint. More recently, treatments of the prob-
lem have appeared in various textbooks. (See referencs 4,
p. 609; refercnce 5, p. 499; reference 6, p. 239.)

That the resulting expression for allowable workineg
stresses may be applied generally with safety, but with-
out beineg unnecessarily conservative, it is necessary to
study the stability of deep rectangular beams under dif-
ferent types of loadine a2nd with various conlitions of re-
straint. The solution of the stability prodblem for cer-
tain cases is avallable from the literature on the subdb-
ject. For other conditions of loadine and support con-
sidered, 1t has been necessary to determine analytically
the exproeseions for the critical loads.

The available literature on the lateral stability of
deep rectangular beams deals exclusively with the theoret-
ical aspects of the subject. ¥No report of an experimental
investigcation was found. Despite the rigor of the theo-
retical solution, an experimental investigation showing
agreement between the theory and test results would in-
crease confidenece in the correctness of the theory, even
if the experimental verification was for but one condition
of loading ani restraint. There are other reasons for an
experimental studly of the subject. While the average of
the results of a number of tests to determine the critical
stress might agree well with the theoretically determined
value, the difference in individual results are also of
importance as indicating the variations that may be en-
countered. The problem of determining the critical load
for a deep rectangular beam does not rsadily yield to a
theoretical solution when buckling occurs at stresses be-
yond the elastic range of the matsrial. Determination of
critical loaAs in this plastic ranse of stresses, from
test results, would permit an empirleal extension of the
results of theoretical arnalysis for elastic dbuckling that
would be of value in derivinzg an expression for allowable
workine stresses in such beams. Such test results mizht
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also suggest a theory for the buck11ng of deep beams in
the plastic rance.

Deep rectangular beams may be either of so0lid sec~
tion or hollow. A brief study of the stability of hollow
rectangular beams was includedi in this investi&ation, with
a Tew tests made to corroborate the theory - .

The object of this investization was to study the
latsral instability of deep rectangular beams under wvari-
ous conditions of loading and restraint, with the view to
determining an expression for allowable desien stresses
for such beams. The investigation included both analyti-
cal and experimental studies and 4ealt with solid and hol-
low rectangular beams. .

ANALYTICAL CONSIDERATION

Solid Section

The thsory of the elastic instability of desp rec-
tangular beams is very well andi completely presented by
Timoshenko (reference 6, pp. 239-256) and by Prescott
(reference 5, pp. 499_529). Both arrive at substantially
the same expression for the critical bending moment at

which the beam bscomes unstadble. This expression may be
written
M K ~VEI GJ '”(1)
cr 1 ST :
where Mcr is maximum bending moment in the beam, in.-1D.

B, modulus of elasticity*, 1b. per sq. in.

moment of inertia of the section about the
greater axis, in.%

*Timoshenko uses the value for Young's modulus of elasti-
city, while Prescott uses the "plate" modulus B' =

E
I—_-_— , Where 4 is Poisson's ratio. This difference
— “, - »
will be discussed later in connectlon with the test re—
sults.



4 N.A.C.A. Technical Note No. 601

G, modulus of rigidity, 1b. per sg. in,
7 4

. seaction factor for torsional rigidity, 4in.
L, span length, in.

and K, constant depending on the conditions of load-
ing and lateral support.

For the solid rectanzular section, the section fac-~
tor for torslon may be expressed

J = gt d : {2)

where b 1s width of rectangle, in.

d, depth of rectansle, in.

and B, constant depeniing on the ratio 4/v.
-Some values for PB,: as given by Timoshenko. (refer-
ence 7), for ratios of d/b .representing H"deep" rec-

tangles are given in the following tadble:

g ' 6 8 -10 o
b

B 0.299 0.307 0.313 0.333

Perhaps a fair average value for B 1in the study of deep
rectangular beams would be 0.31.

Then
J = 0.31b°4 (22)
FPurther,
3
b7 4
I = —— . o 3
z 2 (3)

and, since =.1/3 (for aluminum alloys)

= 2
G == B
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Now,

where S is stress at outer fiber, 1b. per sa. in.
#, boending moment, in.-1D.

¢, distance from neutrsl axis to outer fidver,
in.,, c = d/z

and I, moment of inertia of section about the short
8Xis
Y

The expression for the critical stress in a Aeep rec-
tangular beam may then be written

ba

Scp = E'E Ta . . (8) o
where Scr ig maximum tension or compression in the beam
and K', =a constant depending on the conditions of
loading axd 1atera1 support; X! = 0.591 K

This expression is, of course, valid only when buck-
ling occurs at stresses within the elastic ranee of the ~
material. - Cee e

Values for the constants X and XK' gsre listed in
table I for various conditions of loading and lateral siup~
port, for deep rectangular Deams of one span. Some of
these coefficients were obtained from sources previously
mentioned, while others, which could not be found in the
literature, were determined by the authors. A brief dis-
cussion of the methods émployed and the calculations for
one¢ case may be found in the appendix,

The constantes in tabls I'apply when the load is con-
sidered as applied at the neutral axis of the beam. If,
instead of being applied at the neutranl axis, the load

acts at the top of the beam, the critical stresq is some-
what lower. For the case of a concentrated load applied
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to the top of a 4eep rectangular beam at the center of
the spen, Timoshenko (reference 6, p. 255) gives the fol-
lowing approximate expression for the value of the criti-
cal load: '

p . 18.93 JELZIG (1 _ L.741 [T, ) (
er P N L JG ”)

in which the terms are as previously defined. The first
term of this expression is for the critical load when ap-
pliedi at the neutral axis of the beam, The second term
in the parenthesis represents the reduction in the criti-
cal load wuen applied at the top of the besam. For very
deep rectanesular beams this term may be simplified by

3
substitution (setting J = 339->to read
4
1.42 = (7a)
L

Therefore, when the concentirated load ies applied at the
top of the beam, the constants given in table I for case
1 should be multiplied by the coefficient

(1 ~ 1.42 %) : (70)

A similar expression for the uniformly Ailstributed load
(case 7) applied to the top of the beam can also be ob-
tained from Timoshenko's work. (See reference 3.) TFor
this case the coefficient is

(1 - 1.26 %:l : (8)

AN
Hollow Section Rectangular Tube

The problem of the latoral stabllity of a hollow
rectangular beam hasg not been trcated in any of the
avalilable literature on the subject of lateral instabili-
ty of beams probably because lateral buckling is uncommon
in such beams. Fundamentally, the problem is the same as
for a solid rectangular section, stability being provided
by a combination of the torsiomngzl and lateral flexural
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stiffness of .the beam. TExpressions for the moments of
inertia and the section factor for tor31on are, of course,
different in the case of the hollow rectangle. Also, in
addition to the torsional stiffness of the beam (GJ), any
tendency %o twist is opposed by the bending resistance of
the side walls of the tube in their own planes. TFor or-
dinary long besms, however, this latter consideration can
safely be neeglected.- The expression for the section fac-
tor for torsion for a hollow rectangle may be written '
(reference 5, p. 168):

Bty (b-t)® (2=t,)"°

J = 2 5 3 (9)
bt + dty - t - t,

where t{ is thickness of side walls, in,
t; , thickness of top and bottom walls, in.
and b and t are as previously defined
This expression may be simplified, if the tubing is

of uniform wall thlicknsss, to read"

2 2
J = 2 t (b-t)° (d-1%) (9a)
P +4 - 2%

and, if ¢t 1is negligibly small compared with b and 4,
may be further simplified to

2.8 .- —.
212424
J = ———————— .
b +d | (9%)

The moment of inertia about the long axis will be

v°4 (b-2t) 3 (a-2%)
z~ 13 T 12 - (10)

and the moment of inertia abont the short axis

. bi% _ (b-2%) (d4-2%)% (11)

o1z 18
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Again, if t 1is negligibly small compared with b and

d, these expressions may be written g *
2
I Lt d.‘+b (10a)
= — - 2
% PN 3
and
2
d t 4 '
1, = (v 4+ = (11a)
: 2 s 3

For a hollow rectangular beam in which the wall
thickness 1s negligibly small compared with the width
and depth of the section, an expression -for the critical
stress can be written similar to sguzstion (6) for the

solid section., This expression is _
b, 3 ZA+D
Sor = X' = ( / ) (12)
- . L \3b+d 3(b+d) /.
where N
K" =.K +/3/8 = 0.613K o

A comparison between the stress at which lateral in-
stability would occur in a solid and a hollow dsep rec-
tangular beam of the same outside dimensions may be ob-
tained by considering firat a beam with a ratio of width
to depth of 1/6. Then the B in equation (2) will be
0.299 and the K' wvalue in esquation (6) will become

XKt = 0,880 K
and for the solid section
2
b
8 = 0.5680 KB —
cr L4
For the hollow section ) -

e 3 3d+b
S.. = 0.613 K® -—-( / ) .
er L \3b+d ¥ 3(b+d)

The ratio of the critical stresses will then be
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0.580

. a
3 3d+b - - -
0.613 ( )
\Bb+4d 3(b+4)

Then if b =1 &and 4 = 6, the critical stress for the
hollow section will be 2.01 times the critical stress for
the solid. ssction proviiled, .of course, that both beams
buckle within the elastic rangs.

For a very Aeep beam (b very small compared with 4)
the B value will approach 1/3 and K' will be the same
as K", If b 1in the foregoing expression is neglected,
the Tstio of the critical stress in ths hollow and the
solid beams will be adbout 3 to 1,

Fhen makine these comparisons between the stadbility
of beams of hollow and solid rectangular sectlions of the
same outeide Aimensions, 1t must be remembered that the
comparisons are on the basis of critical stress and not
critical bending moment. If the beams are compared on
the basis of critical bending moment (section modulus X
critical stress), the solid beam, of course, will always
carry the greater moment.

“ATERIAL AND DESCRIPTION OF TESTS

The material for this investigation consisted of 17ST
aluminum alloy rolled rectangular bar with square corners
and 17ST square-corner rectangular tubing. The nominal
dimensions andl the average tensile properties and compres-
sive yiseld strengths of the bars and tubing are shown in
tavle II, : -

. The tensile prorerties of the material were deter-
mined from standard A.S.T.M. sheet specimens or round
thresded-end test spoecimens depending on the thickness of
the material. Both the tensile andi compressive yield
streneth correspond to the stress that producei a perma-
nent set of 0.2 percent. The tensile yleld strensths were
determined from load-strain curves Arawn by an automatic
autozraphic extensometer; the compressive yield strenaths,
from ordinary stress-strain curves.
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The rectangular bars were tested in pairs as beams
on elge as showvn in flegure 1. TBach pair of bars wag ge-~
curely boltedl to channel spreaders of approximately the
same depth as the bars. These spreaders held the ends
of the bars vertically and also preventel the bars from
deflecting laterally. PFigure 2 shows the arrangement of
the ends of the specimens andi the method of applying the
loadis. The span length for the 4- by 2-inch bar and the
8- by 2~-inch bar varied from 36 %o 96 inches andA for the
other bars, from 48 to 12C inches. In every case the un-
supporteil length of the bars (length of bar subjected to
vniform bendine moment) was 24 inches less than the span
length., In each of the tests the vertical deflection of
both the bars was measured at the center of the span by
means of a mirrored scale and taut wires. Lateral deflec-—
tions of the bars were measured from a reference mark on
the top edge of each bar at midspan to fixed points in
the testing machine with a scale graduated to 0.0l iach.
While this method of measuring lateral deflection was sat-
isfactory for these tests, it obviously made no distinc-—
tion between lateral movecment andi rotation of the bars.
Both the vertical and lateral deflections of the bars were
measured for various increments of load until failure oe-
curred by lateral buckling or until the extreme fiber
stress, as computeil by the flexure formula, was apprecia-
bly greater than the yield strength of the material. In
the case of the %- by 6-inch bars over a span length of
48 lnches, the capacity of the machine was reached before
lateral buckling occiirred although the data indicated
that such failure was impendinege.

Huezenberser extensometers were unsel to measure the
maximum fiber stresses at the lower losds. These instru-
ments were attachedl to the top anil bottom edzes of both
tars about 6 inches from the middle of the span. No at-
tempt was made to measure stresses up to failure becauss
of the podsibility of Aamaze to the instruments in case
of gudden failurs.

DISZUSSION
Test Reswults
The results of—the beam tests are summarized in tablse

I1II. This table shows the computed stress at failure and
the type of failure for each test. Failure occurred in
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three distinet ways: vertical ylelding, vertical yield-
ing accowpanied by lateral buckling, and lateral buckling
alone. Typical load-deflection curves for these three
types of failures are shown in figures 3, 4, ani 5. Fig-
ure 3 shows tne vertical and lateral deflection data for
a x— by 2-inch beam stressed beyond the yleld strength of
the material. The departure of the vertical deflection
curve from a straight line was considerable, whereas ths
lateral deflection was zero throughout the test. Fhile
bars in this class have been desc¢ribed as failing by ver-~
tical yieldine, it sbhould be pointed out that, had load-
ing been continuned, ultiwmate failure would probably have
occurred by lsteral buckling in many cases. The test was
stopped when the stress in the outer fiber had apprecia-
bly excesded the yisld strength of the material. The na-
ture of the failure when the apparent ouber Tiber stresss

o
in the beam (S = .Ji) has exceeded 45,000 pounds is not

of extreme importance since for such beams the nominal
iesien stress of 15,000 pounds per square inch (17ST) rep-
resdents a2 factor of safety of at least 3. PFlaure 4 shows
the deflection date for a 3/3- by 4-inch beam. In this
case the beam was ylelding in the vertical direction as
cvidenced by the Aeparture of the load-deflection curve
from a straight line, and failure occurred by lateral
buckling. That lateral. buckling occurs at a very defi-
nite stress is evident from the sharp break in the later-
‘al deflection curves. TFigure 5 shovs representatlve de~
. flection curves far the specimens that failed by laﬁeral
buckling without yielding in the vertical plane.

The critical stress at whlch ‘the rectangular bars
‘failed by lateral buckling, both in the elastic range
and beyond, have been plotted in figure 6 in comparison
with the curve representing the calculated values for
critical stress. : : ’

It is not surprising that the rectangular tube showed
no indication of lateral buckling. Based on the analysis
of a preceding section and employing eguations (9a), (10),

and (11), the calculated value for critical stress, assum-

ing elastic action, is about 186,000 pounis per sguare
inch. The critical stress for a solid bar of the same
outside dimensione and loaded in the same manner would be,
124,000 pounds per sguare inch., Neither of these values

is significant as indicating the strength of the beams
since fallure would occur by yielding instead of by lateral
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buckline, A comparison of these critical stress values, ‘
however, indicates that, for beams of these proportions

(ratio of b/4 of—1/4), the critical stress for the hol-

low tube is abont 50 percent freater than for the solid 0
bar, provided they buckle elastically. For elastic

buckling to occur in a rectanzular beam of such propoer-

tions, the beam would have to be extremely lonez, and

considerable dAeflections in the plane of the loads would

be producei before lateral buckling occurred. If this

deflection is considerei, -the coefficient ‘K 1is found to s
be not a constant but depentient on the ratio of b/d, be-
ing larger for the wider beams. (See reference 6, p. 248.)

] VYhen testel over a2 span length of 120 inches, the
rectaneular tubes ylelded in the vertical plane with no
indicatlion of lateral buckling as 1s shown in figure 7.
Loading of the tubes was discontinued when the vertical
deflection at the middile of the span was 3-1/4 inches.

Failure by Elastic Buckling

The lower straight-line portlion of the curve in filg-

ure 5 represents the equation . ' .
Y
» ba 6 o
S = 3.71 X 10.3 X == X 10 (13) I.
Ld
which is equation .(6) with the XK' wvalue for case 2 (ta-
ble I). The conditions of this case were faithfully re~ ’
produced in the tests. The agreement between this curve ~

and the points representing fallure by elastic buckling
is gquite satisfactory, varticularly when it 1s remembered
that the tests were made on beams of different sizes.

Also in figure 6 is shown the straight line repre-
senting the egnation

2
S = 3.71 X 10.9 2= x 10° (14)
oA

In the derivation of this equation, the value & 1in
equation (1) was replaced by the plate modulus B!,

N

(E‘ = 5 \ , while the value for G remained unchanged.
. . e _ |
{See reference 5, pp. 499-529.) The difference in slope
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of these two lines 1s only about & percent. The points .
representing experimentally determined values of critical
stress fall below the upper line, indicating that perhaps’
the plate modulus value is not applicable to beams of the
proportions of those tested. It is probable that for
beams of extrewely deep and narrow section the critical
stress woulil be slizhtly greater than the calculated val-
ue based on a modulus value of 10,300,000 pounis per :
square inch, o

A stuly of the values of the constant K! given in
table I for various conditions of loading and restraint
indicates the importance of considering the type of load-
ing as well as ths nature of the restraint in calculating

‘the critical stress for a deep rectangular beam. For in-_

stance, a comparison of the value 6f K' for cases 1, 5,
and 8, shows that for a simple span with the ends of the
beam held vertical the critical stress for a uniformly
distributed load is 12 percent greater and for a concen-
trated load at the center of the span is 35 percent great-
er than when fhe beam is subjected to pure bending, If,
however, the énds of the beam are clamped in the horizon-
tal plane (cases 2, 6, and 9), there is very little dif-
ference in the critical stress under the different load~ "~
ing conditions, being lowest for the distridbuted load,

But, if the lateral restraint consists of holding the beam
vertical at the ends and at .the middle of the span (cases
3, 7, and 10), the critical stress for the distributed
load is 31 percent greater and for the concentrated losad,
77 percent greater than for pure bendilng. Ancgther in-
stance of the importance of considering the nature of the
load is afforded in a comparison of the KXK' wvalues for
cases 14 and 16 or cases 13 and 15. Such a comparison
reveals that the critical stress for a deep rectangular
beam loadel as a cantilever with a uniformly Aistributed

" load acting along its neutral axis 1s about 60 percent

greater than for a similar beam loaded with a concentrated
load at the free end, provided, of course, that buckling
occurs within the elastic range. : -
An interesting point 1s brought out by a comparison
of the K! values for cases 9 and 13, which indicates
that a deep rectangular beam built in at the ends and sub-
jected to 2 concentrated load at the middle of the span
will fail by lateral buckling at a stress lower than the
critical stress for a similar beam, loaded in the same '
manner, simply supported in a vertical plane dbut restrained
at the ends asgainst lateral deflection. The critical load
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for the bullt-in beam will be greater than for the simply
supported beam (case B), “but” W111 be less than twice as
great . -

The effect of the positlion of the applied load, rel-
ative to the neutral axis on the lateral stadbility of a
deep rectangular beam, has been discussed. It ie evident
from equations (7) and (8) that this consideration becomes
of great importance for short spans.

Stress Distribution and Buckline Beyond the Elastle Ranee

When the stress in the outer fiber of the beam exceeds
the proportional limit of the material, the expression

S = %; no longer represents the true condition of stress.

For a beam of rectangular croses section, however, it is
not difficult to derive an expression for the stress at
the outer fiber if it is assumed that (1) the material of
the beam is homoceneous and has the same etress-straln re-
lationship 1n tension and compression, (2) that plane sec-
tions remain plane (i.e., the strain is proportional to
the distance from the the neurtral axis), ani (3) all lon-
gitvdinal flbers of the beam are in simple tenalion or com-
pression. ' :

The stress-strain curve shown in figure 8 may also be
considered as a curve of the stress distridbution on the
upper .or lower half of the cross section of a rectangular
beam if the axis representing stress 1s taken as the neu-
tral axls of the beam and the strain axis as the vertical
center line-of the cross section. The depth of the beam
ig arbitrary, and half of the dAepth may be reprerented by
any distance on the strain axis depending on the stress
conditions for the particular case. If half the depth of
the beam ig considered to be represented by a certalin dis-~
tance from the nentral axis, as indicated in figure 8, and
it is assumed that a beam of unit widith 1s being Adealt with,
the moment about the neutral axis of the .ares bounded by
the stress—-strain curve and the line representing the outer .
fiber of the beam, when properlv corrected for thestress n
and depth scales, represents one-~half the resisting moment
offered by a beam of rectangular cross .section of unit

width and of-twice unit depth for that particular value of A
stress at the outer fiber. This resisting moment, which
.8hall be called 'R, has been determined from the curve in

figure 8.for Aifferent values of stress S .at the outer
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fiber, These results have been listed in table IV and
plotted in figure 9. In figure 9 1t is svident that the
relation between S and R may be very closely repre-
sented by two straight lines as shown. The lower portion
represents the relationship- - - : .

S = 3R : (15)

and applies for values of S8 1less than 26,000 pounis per
square inch., For stresses areater than 26,000 pounds per
square inch the relationship is sxpressed by the equation

S = 12,500 + 1.58R (18)

Since R represents one-half the resisting moment
of a beam of rectangular section of unit width and twice
unit depth, the total resisting mowment of a rectangular
section of width v and depth 4 can be shown by scalar
expansion to be : L

M C -
= : (17)
bdi= .

n

M =.E bd or R
2

Then the maximum fiber stress within the elastic range
will be : : i

- .(18)
a2 . -

which coincides with the expression given by the equation

When stresses greater than 256,000 pounis per équarq_
inch are involved, the actual value for the maximum fiber
stress may be obtained from the expression

. 3.12 M o
S = 12 1500 + —— ; ——— == e
ba®

If the value of the stress as determinel by the flex~

' Heo : - .
ure formula (? = E—) is callei the "apparent stress" and
4
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represented by SA’ then for values greater than 26,000
pounds .per sguare inch actual sftress may be expressed in
terms of the apparent stress as follows:

S = 12,500 + 0.52,S, (20)
or
S - 12500
Sp = =——— (20a)
0.52

A consideration of the stress distribution across
the section affords a logical means for determining the
critical load on a deep rectangular beam when stressed
beyond the elastic range. If it is assumed that the ra-
tio between the modulus of elasticity B and the modulus
of rigidity G remains unchanged, the apparent critical
stress Sy may be obtained from equation (6) provided
the proper value for the effective modulus % is used.
The value for the effective modulus used in determining
the portion of the curve in figure 6, representine lat-
eral bucklineg beyond the elastic range, was obtained as
the average modulus for all the elements of a e¢ross sec-—
tion corresponiineg to a particular value of stress on the
outer fiber. For the cass of pure bending, the gstress
Aistribution on all cross sections of the beam are the
same. By definition, the modulus of elasticity is the ra-
tio of change in stress to change in strain. Consequently,
the modulus at any given stress is the slope of the stress-
strain curve at that stress. This modulus value, aptly
callsd the "tangent" modulus, has been plotted in fizurs
10 for the stress-strain curve shown in fizure 8. The
average modulus for the beam for a particular value of
stress at the outer fiber would then be the averasze ordi-
nate of the portlion of the tangent-modulus curve below
that stress. This average modulus curve has alsoc been
Plotted in figure 10, Since it 48 convenlent to deal in
terms of apparent rather tnan actual stress at the outer
fiber, the averags modulus curve has also been plotted
against apparent stress in figure 10. Values from this
curve have been used in determining the critical stress.
curve of figure 6. The relation between apparent outer
fiber stress ani average modulus can be represented by a
straight line. The equation for this straieght line is

Ey, = 12,550,000 - 102 §, (21)

and from equation (8), the critical apparent stress may
be expressed



N.A.C.A, Tschnical Note No. 601 17

12550000 { k' 22
\" 14
Sp = - - (22)
1 + 102 (K' [ :
La

This egquation is applicable for stresses greater
than 22,000 pounds per square inch and permits a direct
determination of the critical apparent stress.

It is recoenized that this value for the effective
modulus cannot be rigidly Jjustified by theoretical con-
gsiderations. It can be shown, however, that the criti-
cal stress calculated on the basis of a more rigid the-
oretical consideration of the lateral flexural and tor-
sional rieidity of the beam, which would include an in-
volved expression for the sffective modulus, will be
slightly greater than the value obtained using this sim-
plified effective modulus value., It 1s significant to
note the agreement between the calculated critical stress
curve thus obtained and the experimental results (figure‘
6) . -

It might be pointed out that this value for effec-
tive modulus applies only in the case of pure bending.
For other types of loading, such as concentrated or dis-
tribuied loads, where the distribution of stress on a
cross section varies througzhout the length of the beam,
it would be necessary to consider the variation in aver-
age modulus for different ssections. In such cases, the
effective moiunlus corresponding to a particular value of
apparent stress (beyond the elastic rangse) would be
greater than for pure bending. ’

~ As may be seen in figure 6, the curve representing
the critical apparent stress beyond the elastic range
may be closely approximated by a straight line. The
critical stress for the case of a deep rectangular beam
of 17ST aluminum alloy subjected to pure bending with the
ends fixed against lateral deflection may be determined
from the equations for the two straight lines. For

%% X lphsvaluss from O to 680,

’ 2 e e e -
S = 38.2 x 10° X %I (23)
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For values of g% x 10~ ° ransing from 680 to 1,500
( 6 b2
= ' 3.3 X b_ )
S, 10,000 + { 23.2 10 T3 (24)

where SA is the apparent stress on the outer fiber

(- %)

CONCLUSIONS

From this study of the lateral gtabllity of deep
rectangular beams, the followine conclusions may be
drawn:

l. The stress at which a desep rectangular beam bde-
comes unstable within the elastic range of the material
may be determined from the ecequation

[

0

S = X'E E— : (8)

2

2. In the determinpation of the critical stress for
s deep rectangular beam, it 1s important to consider the
nature of the 'load as well a8 the manner in which the
beam is supported.

3. For a long deep rectangular tube in which the wall
thickness is uniform and is small compared with the width
and depth, the critical stress within the elastic ranga
may be expressed

b - /Ba+b
S = K'B <3b+d B(d+b)> (12)

4. Depending on the ratio of b/d, the critical stress
for & thin-walled deep rectangular tube may be as much as
three times as great as the criticsl stress for a solid
rectangular beam of the same dimensions, loaded and sup-
ported in the same manner. For a ratio of b/d of 1/4
the critical stress for the tube would be about 50 percent
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greater than for a solid bar of the same size provided
buckling occurred elastically.

5. The critical stress, as determined sxperimentally
for solid deep rectangular beams subjected to pure bend-
ing with their ends restrained against lateral ieflec~'
tion, agreed very well wf%h the values™ Eéfbrmined analyt—
ically. - U=

6. For deep rectangular beams of solid section sub-
jected to pure bending beyond the elastic range of the
material, the critical apparent stress may be calculated

, 2 .
from § = K'E %E, using as the value of E the average

tangent modulus for all the elements of the cross section.

For a rectangular bar of 178T, this average modulus value
may be expressed by ;

B, = 12550000 - 102 S, (21)

where
M |
5, = ;9 > 32,000

and the critical apvarent stress may be expressed by

12550000 K‘-——)
SA. = . L (22)

K1
1+ 102 (o0 B2)

7. The critical apparent strees for values between
the limit of the elastic range and a value of 45,000
pounds per square inch, as determined by tests on deep
rectangular barse subjected to pure bending with their

ends restrained against lateral deflection, was in agree-

ment with valnes calculated by equations (6) and (22).
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APPENDIX

Since ‘lateral buckling of a deep rectaneular beanm
congistes of a combined lateral deflection and twisting
of the beam, both the Flexural anil torsional stiffness
of the beam must be considered in determining its 1limit
of atability. If axes are taken as shown in figure 11
and the an&le of rotation is expressed as 6, the 4if-
ferential equations of equilibrium for the lateral bend-
ing and the twisting of the bheam may be written

day
BI_ - = (25)
2 iR B '
d6
GF == = M 26
T P (26)
where EI, 1is lateral flexural rigidity

GJ, torsional rigidity

My, lateral bendine moment that can be expressed .

in terms of the external load ani the an-
gle ©

Mp, twisting moment that can be expresgsed in
terms of the external load and sone func—
tion of the lateral deflection ¥y

Thesz eguations may be reduced to a differential equa-
tion of the second order, first degree in 6. When this
Ai1fferential equation has constant coefficients, as is
the case when the beam ig subjected to pure bending, it
yields readlly to an exact soclution. If the squation
has variable cosfficients, a solution may be effectei by
the method of infinite series, This method of solution
is frequently very laborious and, in many cases, where
the curve 6 = f(x) is of simple form, the equation may
be more easily solved approximately by the method of fi-
nits differences. This method divides the length of the
beam into equal intervals and assumes that three succes-
sive points are connected by a curve of parabolic form.
Phe accuracy of this method is improved by increasing
the number of intervals, but in many cases a solution of
sufficient accuracy can be obtained with surprisingly
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little work, Obviously, such a method will not give very
accurate results throuegh a point of contraflexure. It

has been found that values for critical stress determined
by this methol are somevhat lower than values ziven by the
exact solution of the diffsrential equation.

Another method that may be frequently used to advan-
tage in the determination of the limit of lateral stabil-
ity of 2 beam s the energy method used extensively by
Timoshenko. In this method, the strain enerzy of lateral
bending plus the strain senergy of twist are equated to the
work produced by the lowering of the external load caused
by the lateral dbuckling. The expressions for the external
work anil the strain energy will involve functions of both
6 ani y. From the equilibrium equations (25) and (26),
however, one or the other of these variables can be elim-
1nated Solution of the squation.is then accomplished by
TEssuming a function of the variable that satisfies the

. boundary conditions and effecting the integrations in-
volved., If the function of the variable assumed is the

" correct one, the critical load thus determined will agree
exactly with the value determined from an exact solution
of the differential esguation. For any other function,
however, the critical locad dstermined by the energy meth-
od will invariably be higher than the exact solution.
The strain-energy method was found to be particularly usse-

ful in cases involving distributed load andi when the beam

was restrained against lateral deflections. An analysis
of the effect on the stablility of the beam of a displace-
ment of the load above or below the neutral axis can also
be readily made using this method.

‘As an example of the mse of the strain-enersy method,
calculations will be given for the. critical value of a
uniformly Aistributed load applied at the neutral axis of

a simply supported deep rectansgular beam, the ends of which

are held vertical and restrained against lateral deflec-
tion. Consider the beam sho"n in figure 12, loaded with
e uniformly Aistributed load of w (1lb. per sq. in.) act-
ing at the neutral axis with the coordinate axes Alsposed
as indicated. The lateral eni restraining moment W 1sg

such that the slope of the lateral 1eflection curve at the

ends is zero; i.e.,

where X = =%IL.
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The expression for the strain energy of bending can
be written (reference 7, pp. 303-308)

— L ra2y\2 '
Vg = BI, [ E;E> ix (27)

and the strain energy in torsion can be expressed

aé .
Ve = (‘dx> dx (28)

The work done by the external load corresponding to the
strain energy of bending and twisting can be expressed
(reference 3) .

a
W=w 8 (d J - x?) ax (29)

Then the equation representing the balance between exter-
nal ahdinternal energy becomss

fe(dy\(L -x)dx—GJJL de)dx+EI f <1 )dx (30)

For these conditions of loading and restraint equa-
tion (25) becomes

day - .
Bl, =-;‘§ (1 - x®) & - ¥ (81)

At thls point the a ssumed expression from the func-
tion of B is introduced. An equation of the form

%lA(é + cos %;) (32)

satisfies the boundary conditions, which are

x = *I 8 =0 EE =0
dx

dx



N.A.C.A., Technical Note No. 801 .23

Then equation (31) becomes

a2y

BEI
2 dxa

= %A(l + cos T—E-) (12 - x®) - ¥ (33)

L da y R - e —— -
r dx = 0O 34
‘o ax® : (_. )_
d.ay i i P - — R
If for z its value from sequation (33) be substi-
x

tuted, the restrazining moment N can be svaluated. It
is found that S

N = 0.4347 wALZ _ - (35)

The terns A%y andi /day in equation (30) can now
Ax® . Nax2/ : . . -

be replaced by expressiong invelving 8 _as the only varl-

abls, Terms involvine any function of ©6 can In turn be

replaced by their equivalent from equation (32) Bquation

(30) is thus vreducedl to the form '

2
w 2 x 23 mx 41
—_— - 75 =
Te1, Jo , (L ) ._(1 + cos T 0.7558L k ax |
a I -
&I A sin2<2f‘§dx (36)
La © L /s

Performing the indicated integrations and simplifying,

L. = 6.11 =22
Wior T Oty 1,2

Aluminum Company of America,
Aluminum Research Laboratories,
New XKensington, Penna., Nov. 11, 1936.
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TABLE |
CONSTANTS FOR DETERMINING THE LATERAL STABILITY OF SOLID DEEP RECTANGULAR BEAMS
ASE SIDE VIEW TOP VIEW K | ¥
L=
| ({ % @ 34 | 186
% L .
2 | (E ) | = | 2|
_*_['é

3| (= j} - 6.28 | 3.7l
022 | 545
354 | 209
610 | 36
824 | 487
4235 250
647 | 382
iz | as7
Bl | 774
520 | 313
588 | 348
a0l | 237

N — % |
5| 3 : %—X— a0l | 237
%
l6 M Bem— | 43| W0
%
17 m ZX—‘ 643 | 380
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TABLE II
Nominal Dimensions and Mechanical Properties of Rollsd
Rectangular Bar and Rectansgular Tubing
17ST Aluminum Alloy
Section|Width|Depth Yield strength Tensile Blongation
(in.) | (in.) (1b./sq.1in.) strength | in 2 in.
(1b./sa.in,)| (percent)
Tension |Compression
‘Bar 1/2 2 40, 400 33,800 55,530 24.3
Bar 3/4 2 40,900 33,000 55,400 25.1
Bar 1/4 4 40,160 35,000 56,520 24.2
Bar 1/2 4 37,800 34,000 56,400 24.2
Bar 3/8 4 37,550 33,900 54,340 25.5
Bar 1/2 5 36,500 33,700 55,930 26.6
Tubing*|1-1/4| 5 |38,600 59,450 21.4
*Qutside dimensions; wall thickness = 0.095 in.



TABLE III

EUNBIARY OF TEST RISULTS

o R el frnmnl el bttt et S |y o
Depth ( Width |{10.3) [ (in.)[ (4n)) L4 Heamired | Computed ¢y ) y| Apparent| actusl

1| 2007 | 0750 | 1.018 88 £ 5,803 x 1078 8,175 | 5,805 18,000 36,380 | 31,300 Yislding

2 | a.018 750 | 1.011 73 48 5,884 8,170 | 5,935 21,000 41,540 | 34,300 .

3 | 2.012 .48 | 1.009 48 24 11,388 8,160 | 5,945 34,000 47,67 | 37,300 .

4 | 3,008 748 .999 36 13 33,289 6,175 | 8,005 24,000 48,080 | 37,300 .

6 | 1.004 406 867 | 96 73 1,7M3 9,526 | 9,130 10,800 33,880 | 20,300 .

B | 1,994 .498 .658 7a 48 3,870 9,280 | 9,130 13,500 41,030 | 23,300 '

? | 1.994 .487 .859 48 u 5,081 9,300 | 9,106 13,600 | 40,970 | 23,800 .

a | 1.998 .498 .683 38 12 10,344 8,860 | 9,085 18,000 54,380 | 40,300 "

9 | 5.993 .501 | 8.662 | 120 88 855 3,360 | 2,255 33,000 24,780 | 24,780 Lateral buckling
10 | 4.000 .503 | 2.676 28 72 a7B 2,360 | 2,340 41,700 31,180 | 28,700 ' "

1n | 4.014 .508 | 2.693 72 48 1,308 3,37 | 3,30 68,080 43,110 | 35,000 [Lateral bomekling and
13 | 4.013 501 | 2.888 4a 24 3,608 2,360 | 3,230 80,000 44,840 | 35,800 yie%ﬂnlgins

13 | 8.083 600 | 6.063 | 120 26 432 - 1,030 2g0 51,600 | 17,080 | 17,080 Lateral buckling
14 | 6.010 .500 | 8.028 95 73 578 1,040 996 67,050 43,550 | 33,880 L] '

16 | 6.008 .500 | 6.009 72 48 887 1,010 | 1,000 80, 000 20,960 | 28,100 " '

16 | 6.006 .499 | 6.00L 49 a4 1,727 1,008 | 1,000 | 130,000 53,990 | 33,200 Luml buckliﬁg and
17 | 2.997 .378 | .00 | 130 95 269 3,080 | 3,996 13,2300 13,170 | 13,170 La.tera.lngunﬂing
18 | 4.003 377 | 2.013 96 73 480 3,135 | 8,880 19,230 19,120 | 19,180 "

19 | 3.995 .37 | 3.003| T3 4 737 2,055 | 2,998 26,850 28,810 | 38,500 . ’

20 | 3.999 .375 | 1.988 a3 24 1,485 3,065 | 3,000 44,400 44,480 | 35,500 Lut::ﬁdiw.okllng and
21 | 3.986 .363 | 1.343 | 120 98 167 4,880 | 4,470 4,425 8,580 | 8,680 La.tara.‘l.ngucklmg
23 | 4.016 .a64 | 1.362 98 72 333 4,585 | 4,405 8,B80 8,180 | 8,100 " '

23 | 4,000 .354 | 1.358 8 4B 338 4,535 | 4,430 8,035 12,170 | 13,170 . r

2 | 3.994 .864 | 1,360 48 U 873 4,876 | 4,445 17,400 45,780 | 85,780 " "

a5 | 4,991 | 1.a80 | 3,548 | 120 6 -— 3,33 | 9,865 56,500 43,700 | -— Yielding

28 [a.992 | 1.350 | a.845 | a6 73 — 2,306 | 3,388 B4, 000 43,430 | —— '

T08 °OX ©30H TBOTWHOAL 'V'O'V'H
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TABLE IV

Values of Resisting Moment R
for Various Values of Stress at the Outer Fiber S
of a Bar of 17ST Aluminum Alloy

Stress Resisting Moment
(1b./sq.in.) (in.-1Db.)
10.500 3,600
20,900 6,920
28,300 10,140
31,500 12,240
33,700 13,720
35,300 14,670
36,800 15,600
38,000 16,280




Figure 1.~Set-up for lateral instability test of deep rectangulax bars.
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